OXIDATIVE REMOVAL OF N-(p-METHOXYBENZYL) GROUP ON DIKETOPIPERAZINE SKELETON WITH CERIC AMMONIUM NITRATE Juji YOSHIMURA*, Masanori YAMAURA, Tsuneji SUZUKI, and Hironobu HASHIMOTO Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227 N-(p-Methoxybenzyl) groups in some diketopiperazine derivatives were proved to be readily and efficiently removed with ceric ammonium nitrate in acetonitrile-water under mild conditions, where N-benzyl, methoxyl in the aminal structure, and isolated vinyl groups remained unchanged. Recently, many biologically active diketopiperazines such as bicyclomycin and sirodesmin²⁾ have been discovered, and their synthetic studies have been carried out intensively. In order to protect the amido nitrogen of the diketopiperazine some alkyl groups such as methylthiomethyl 3) and methoxymethyl 4) and acyl groups 5) such as acetyl and benzoyl were reported. These protecting groups, however, have some difficulties in chemical stability and deprotection. Here we would like to report p-methoxybenzyl group as a new candidate of the protection which can be introduced easily and removed under mild oxidative conditions. Four model diketopiperazine derivatives (4, 6, 8, and 11) were prepared from 1-acetyl-3-(2-methylpropylidene)-piperazine-2,5-dione (1).⁶⁾ Benzylation of 1 with sodium hydride and benzyl bromide in N,N-dimethylformamide (DMF) overnight at room temperature gave, in 73% yield, 4-benzyl derivative ($\frac{2}{2}$), which was converted into 1-benzyl-6-(2-methylpropylidene)-piperazine-2,5-dione (3, mp 124-126°C) quantitatively by deacetylation with hydrazine hydrate in DMF at 0°C for 2 h. p-Methoxybenzylation of 3 gave, in 80% yield, the first model compound (4, mp 98.5°C) having the exocyclic double bond, which was further converted into the third model compound (8) in 62% yield by treatment with N-bromosuccinimide in methanol and catalytic reduction in 1 $$R_1^1 = Ac$$, $R_2^2 = H$ $$2 R = AC, R = Bn$$ $$5 R_1^1 = R_2^2 = R_3^3 = H$$ 6 R'=MBn, R'=R'=H 7 R 1 =MBn, R 2 =OMe, R 3 =Br $$8 R^{1} = MBn, R^{2} = 0Me, R^{3} = 1$$ 9 $$R^{1}=H$$, $R^{2}=ONO_{2}$, $R^{3}=OH$ 10 $R^{1}=H$, $R^{2}=OMe$, $R^{3}=H$ 10 $$R^1 = H$$, $R^2 = 0Me$, $R^3 = H$ R = MBn 12 R = H Bn= $$\bigcirc$$ CH₂ MBn=CH₃0- \bigcirc -CH₂ ethanol in the presence of 10% palladium-charcoal and ammonium acetate, where removal of neither p-methoxybenzyl nor benzyl group was observed. Catalytic reduction of $\underline{3}$ in ethanol in the presence of 10% palladium-charcoal followed by alkylation with sodium hydride and p-methoxybenzyl chloride in DMF overnight at room temperature gave the second model compound ($\underline{6}$, mp $104-105^{\circ}$ C) having both N-benzyl and N-(p-methoxybenzyl) groups. The fourth model compound ($\underline{11}$, mp $123-124^{\circ}$ C) having an isolated double bond was prepared by alkylation of 6 with lithium diisopropylamide and allyl bromide. Various oxidative and selective removal of p-methoxybenzyl groups in the above model compounds was examined using some oxidants such as 2,3-dichloro-5,6-dicyanobenzoquinone 7), chromium trioxide 8) and ceric ammonium nitrate (CAN). 9) The most practical results were obtained with CAN as shown in the Table. Thus the p-methoxybenzyl group could be removed quantitatively with CAN in acetonitrile containing water (2-50%), giving the corresponding amount of p-methoxybenzaldehyde. The concentration of this oxidant seems to be critical as shown in the unsuccessful run 4. Further, an interesting difference of double bonds against CAN was observed between $\frac{4}{2}$ and $\frac{11}{2}$. The former gave an oxidative addition compound ($\frac{9}{2}$, mp 137°C), while the latter not. These results indicate a promising aspect of p-methoxybenzyl group for protection of amido nitrogen on diketopiperazine skeleton, together with benzyl group, which was recently used for the total synthesis of bicyclomycin. 10) | lable | Oxidative | Removal | o f | Methoxybenzyl | Group | with | CAN | |-------|-----------|---------|-----|---------------|-------|------|-----| | | | | | | | | | | Run | Substrate | CAN
Molar
equivalent | Concentration mol/1 | H ₂ 0/CH ₃ CN | Temperature
°C | Time
h | | luct and yield (%) | |-----|-----------|----------------------------|---------------------|-------------------------------------|-------------------|-----------|------|--------------------| | 1 | 6 | 2.5 | 0.33 | 1:2 | 0 | 12 | 5 | 93.7 | | 2 | 6 | 3.8 | 0.33 | 1:2 | r.t. | 2 | 5 | 98.6 | | 3 | 6 | 5.0 | 1.32 | 1:100 | r.t. | 2 | 5 | 97.6 | | 4 | 6 | 2.0 | 0.05 | 1:2 | r.t. | 3 d | no r | eaction | | 5 | 4 | 7.6 | 0.50 | 1:1 | r.t. | 10 | 9 | 50.2 | | 6 | 8 | 10.8 | 0.45 | 5:6 | 0 | 10 | 10 | 91.9 | | 7 | 11 | 2.5 | 0.30 | 1:2 | 0 | 12 | 12 | | ## References - H. Maag, J. F. Blount, D. L. Coffen, T. V. Steppe, and F. Wong, J. Am. Chem. Soc., 100, 6786 (1978). - 2) J. P. Ferezou, A. Quesneau-Thierry, M. Barbier, A. Kollmann, and J.-F. Bousquet, J. Chem. Soc., Perkin Trans. 1, 1980, 113. - 3) Y. Kishi, S. Nakatsuka, T. Fujiyama, and M. Havel, J. Am. Chem. Soc., <u>95</u>, 6493 (1973). - 4) S. Nakatsuka, H. Miyazaki, and T. Goto, Tetrahedron Lett., 21, 2817 (1980). - 5) T. Fukuyama, S. Nakatsuka, and Y. Kishi, Tetrahedron, 37, 2045 (1981). - 6) C. Gallina and A. Liberatori, Tetrahedron, 30, 667 (1974). - 7) Y. Oikawa, T. Yoshioka, and O. Yonemitsu, Tetrahedron Lett., <u>23</u>, 885 (1982). - 8) M. Bertolini, C. P. J. Glaudemans, Carbohydr. Res., 15, 263 (1970). - 9) S. Torii, H. Tanaka, T. Inokuchi, S. Nakane, M. Akada, N. Saito, and T. Sirakawa, J. Org. Chem., 47, 1647 (1982). - 10) S. Nakatsuka, K. Yamada, O. Asano, K. Yoshida, and T. Goto, 47th National Meeting of the Chemical Society of Japan, Kyoto, April 1983, Abstr. No. 3H-14. (Received April 16, 1983)